Công nghệ vượt trội của những chiếc máy bay điện “nhanh nhất thế giới”

Máy bay điện nhanh nhất thế giới vừa được chạy thử trên đường băng với tốc độ 500km/h. Được biết đây là chiếc máy bay sẽ trở thành hình mẫu của tương lai

Máy bay điện Spirit of Innovation

Chiếc máy bay điện trên có tên là Spirit of Innovation do hãng Rolls-Royce thử nghiệm. Việc thử nghiệm trên đường băng đóng vai trò quan trọng thể hiện hệ thống đẩy tối tân Spirit of Innovation.

Các nhà phát triển hy vọng mẫu máy bay này không chỉ trở thành hình mẫu với máy bay tương lai mà cả với taxi bay và các hình thức giao thông đô thị khác.

Rolls-Royce lần đầu tiên công bố thiết kế máy bay năm 2019 với mục tiêu phá kỷ lục tốc độ dành cho máy bay điện trước đây do Siemens lập ra vào năm 2017 (338 km/h). Hãng chế tạo Spirit of Innovation cùng với nhiều đối tác theo chương trình Thúc đẩy điện hóa máy bay của chính phủ Anh. Phương tiện trang bị bộ pin 6.000 tế bào với mật độ năng lượng cao nhất từng được dùng trên máy bay.


Chiếc máy bay điện được thử nghiệm đạt tốc độ 500km/h. Ảnh: VnExpress

Hệ thống truyền lực điện 400 kW được kỳ vọng có thể giúp máy bay đạt tốc độ trên 482 km/h, lập kỷ lục mới dành cho máy bay điện. Trong loạt thử nghiệm vừa qua, Spirit of Innovation cho thấy hệ thống đẩy đã được lắp ráp thành công.

Rob Watson, giám đốc Rolls-Royce Electrical, cho biết: “Lần đầu tiên chiếc máy bay tự đẩy về phía trước bằng năng lượng từ bộ pin cao cấp và hệ thống đẩy. Đây là đột phá trong công nghệ điện. Hệ thống này sẽ giúp Rolls-Royce đi đầu trong cung cấp hệ thống điện trên thị trường giao thông trên không trong đô thị”.

Máy bay điện 9 chỗ eCaravan

Tương tự, trước đó, chiếc máy bay trang bị hệ thống đẩy bằng điện công suất 750 mã lực thực hiện chuyến bay thử đầu tiên kéo dài 30 phút ở bang Washington Mỹ.

Máy bay điện 9 chỗ eCaravan, kết quả hợp tác giữa công ty động cơ MagniX và công ty hàng không AeroTEC bay phía trên thành phố Moses Lake thuộc bang Washington (Mỹ) dưới sự điều khiển của một phi công thử nghiệm và theo sau là một chiếc máy bay hộ tống nhỏ. eCaravan bay tới độ cao 762 m, sau đó hạ xuống 305 m và dành 25 phút để bay lướt phía trên cơ sở sân bay Moses Lake.

Khi bay trong không trung, phi công điều khiển eCaravan thực hiện nhiều thao tác nhằm kiểm tra chuyển động và độ an toàn. Chiếc máy bay điện hoàn thành thử nghiệm sau 30 phút bay vòng quanh cơ sở Moses Lake và trở lại đường băng nơi nó cất cánh.

Để phát triển phương tiện, nhóm thiết kế sử dụng máy bay tầm trung Cessna Grand Caravan và trang bị thêm động cơ điện. MagniX hy vọng có thể tung ra phiên bản thương mại của eCaravan với tầm hoạt động 160 km vào cuối năm sau.

Theo Roei Ganzarski, giám đốc điều hành MagniX, động cơ điện rất cần thiết đối với máy bay để giảm lượng khí thải. Ganzarski cho rằng máy bay điện sẽ có chi phí vận hành rẻ hơn do nhu cầu sử dụng nhiên liệu hóa thạch ngày càng giảm. Chi phí cho mỗi giờ bay của máy bay điện sẽ rẻ hơn 40 – 70% so với máy bay thông thường. Nhờ đó, các nhà vận hành có thể đưa nhiều máy bay tới sân bay nhỏ hơn, mang lại trải nghiệm đưa đón tận cửa và không thải khí CO2 độc hại.

Ganzarski dự đoán máy bay điện sẽ thực hiện mọi chuyến bay dưới 1.600 km trong vòng 15 năm tới nhưng trước hết cần cải tiến công nghệ pin. Hiện nay, máy bay điện phù hợp hơn với các chuyến bay ngắn khoảng 160 km. Ngoài MagniX, nhiều công ty khác như Airbus, Embraer và Rolls-Royce cũng đang phát triển máy bay điện.

Máy bay điện X-57

NASA sắp tiến hành thử nghiệm vận hành trên mặt đất bằng điện cao thế với mẫu máy bay đầu tiên hoạt động hoàn toàn bằng điện X-57 Maxwell.

Cơ quan Hàng không Vũ trụ Mỹ (NASA) công bố thiết kế cuối cùng của mẫu máy bay hoạt động bằng điện mang tên X-57 Maxwell. Là máy bay điện có người lái đầu tiên do NASA phát triển trong hai thập kỷ qua, X-57 có phần cánh thuôn dài.

X-57 được phát triển dựa trên mẫu máy bay hạng nhẹ Tecnam P2006T 4 chỗ ngồi, trang bị 12 motor điện ở rìa cánh cùng với 2 cánh quạt lớn ở đầu cánh.

Theo NASA, hình dạng cánh dài và dẹt sẽ giúp tăng hiệu suất bay bằng cách giảm lực cản. Motor điện cung cấp lực đẩy để cất cánh và hạ cánh, giúp X-57 đạt tới độ cao hành trình. Ở độ cao này, motor điện ngừng hoạt động, các cánh quạt gập lại bên trong vỏ bảo vệ. Máy bay duy trì hoạt động nhờ cánh quạt đường kính 1,5 mét ở đầu cánh.

Mẫu máy bay X-57 hướng đến đáp ứng các tiêu chuẩn về khả năng bay, độ an toàn, tiết kiệm năng lượng và hạn chế tiếng ồn, theo Brent Cobleigh, quản lý dự án ở Trung tâm nghiên cứu bay Armstrong của NASA tại Edwards, cách Los Angeles 160 km về phía bắc. X-57 được phát triển từ năm 2015 và dự kiến bay thử lần đầu tiên vào cuối năm nay.

Thử nghiệm sẽ diễn ra tại Trung tâm nghiên cứu bay Armstrong của NASA ở Edwards, California, tạo ra cột mốc quan trọng cho dự án khi NASA triển khai từ giai đoạn thiết kế linh kiện và nguyên mẫu tới vận hành phương tiện như một chỉnh thể thống nhất, tiến gần hơn tới chuyến bay đầu tiên. Hiện nay, X-57 đang được chế tạo theo cấu hình đầu tiên, gọi là Mod 2, sử dụng hệ thống hỗ trợ pin ở giai đoạn thử nghiệm, lấy năng lượng từ bộ cung cấp điện cao thế trong khi công tác phát triển hệ thống kiểm soát pin gần hoàn thành. Theo thiết kế, X-57 có tầm hoạt động 160 km và vận tốc tối đa 282 km/h.

Thử nghiệm sẽ bắt đầu với công suất thấp, kiểm tra khởi động và tắt máy để xác nhận phần mềm điều khiển motor mới sẵn sàng để sử dụng như dự kiến. Gần đây, phần mềm này và nhiều bộ phận quan trọng khác được thiết kế lại dựa trên những bài học trước đó, theo nhà thầu chính của dự án, công ty Empirical Systems Aerospace, hay ESAero, ở San Luis Obispo, California.

Các thử nghiệm sẽ bao gồm vận hành phương tiện với công suất cao hơn. Cặp motor điện đầu tiên trên X-57 do ESAero cung cấp, sẽ được nạp điện và kích hoạt, cho phép kỹ sư đảm bảo cánh quạt đẩy quay như thiết kế. Sau đó, họ sẽ tăng tốc motor, thông qua hệ thống thiết bị trên máy bay và xác nhận tất cả cảm biến đã lắp có hoạt động tốt không.

“Nhiều thành viên trong đội thực hiện thử nghiệm chính là những người sẽ ngồi ở phòng điều khiển bay, và đó là lý do tôi rất hào hứng”, Sean Clarke, nhà nghiên cứu chính trong dự án X – 57 của NASA cho biết.

An Dương (T/h)
http://vietq.vn/cong-nghe-vuot-troi-cua-nhung-chiec-may-bay-dien-nhanh-nhat-the-gioi-d184430.html

Tuổi thọ của pin xe hơi điện có thể kéo dài trong bao lâu?

Dù đã khắc phục trong chi phí sản xuất pin xe hơi điện, tuy nhiên vẫn còn một vướng mắc cần khắc phục cho loại pin này chính là tuổi thọ sử dụng.

Người dùng hầu như sẽ không thể biết được tuổi thọ của pin trong các xe ô tô điện là bao nhiêu, mà khi họ mua xe, các hãng sản xuất sẽ tuyên bố rằng pin sẽ được bảo hành nếu xảy ra sự cố. Thông thường, tuổi thọ của pin xe điện là 8 năm/100.000 dặm (khoảng 160.000km), nhưng điều này sẽ thay đổi tùy theo nhà sản xuất, điều kiện môi trường sử dụng, và cách thức người dùng sử dụng.

Chi phí sản xuất pin xe điện đang dần giảm qua từng năm. Nhiều số liệu so sánh cho thấy giá pin EV lithium-ion đã giảm khoảng 80% so với hồi năm 2010 khi loại pin này mới ra mắt. Dẫu vậy, tuổi thọ pin vẫn là vấn đề quan trọng và thực tế đang là một trong những rào cản lớn nhất của xe điện.


Tesla đi đầu trong các mẫu xe điện.

Được biết, tình trạng pin (hay còn gọi là tình trạng sức khỏe của pin (SoH) – vốn được xem là thước đo lượng pin có thể cung cấp, được bắt đầu với 100% và xuống cấp dần theo thời gian. Suy giảm tuổi thọ của pin là một quá trình tự nhiên làm giảm vĩnh viễn lượng năng lượng mà pin có thể lưu trữ hoặc cung cấp.

Nhiều nghiên cứu khác nhau đã được thực hiện trên các mẫu xe điện để kiểm nghiệm mức độ xuống cấp của hệ thống pin. Chẳng hạn, một thử nghiệm pin xe điện được tiến hành trên mẫu xe Tesla Model S di chuyển được quãng đường 1,5 triệu dặm trong khoảng thời gian 3 năm. Tình trạng sức khỏe pin (SoH) của mẫu xe này ở trạng thái 82%.

Model S ban đầu được cung cấp gói bảo hành 8 năm và không giới hạn số km, nhưng hãng xe điện đã phải giảm xuống mức 150.000 dặm/8 năm và 70% SoH vào năm 2017.

Các nhà sản xuất khác cũng có chế độ bảo hành tương tự đối với pin xe điện. Mercedes-Benz cung cấp gói bảo hành 100.000 dặm/8 năm cho pin xe điện của mình. Điều này cũng được Jaguar Land Rover thực hiện với mẫu Jaguar I-Pace.

Rất nhiều người dùng cho biết rằng, pin xe điện xuống cấp nhanh hơn trong 1 hoặc 2 năm đầu tiên. Theo Autocar, trạng thái pin xe điện có thể giảm khoảng 8% trong năm đầu tiên. Sau đó, mức giảm sẽ vào khoảng 5% mỗi năm.

Hầu hết các nhà sản xuất pin và xe điện đều cố gắng để tránh tình trạng xuống cấp nhanh của pin. Nhiều giả thiết đặt ra rằng, khi pin được sản xuất tốt thì tình trạng pin xuống cấp nhanh có thể là do hoạt động quá mức. Điều này xảy ra do việc sạc quá nhiều (làm tăng nhiệt độ pin thường xuyên) hoặc do sạc và xả tối đa quá thường xuyên.

Các chuyên gia cho biết, SoH sẽ là thước đo đối với việc kinh doanh pin xe điện trong tương lai. Mặc dù người sử dụng xe điện sẽ tập trung vào thời gian sử dụng pin từ trạng thái sạc (SoC) vì nó cho biết liệu chiếc xe có đủ điện để đi đến đích hay không, nhưng các nhà nghiên cứu cho biết, SoH mới là thước đo quan trọng thực sự về mặt kinh tế.

Nếu pin xe điện ở trạng thái 70% SoH nó có thể không còn phù hợp để sử dụng trong xe điện. Tuy vậy, các viên pin này sẽ rất hữu ích trong hệ thống lưu trữ năng lượng (BESS – battery energy storage system) trong vài năm cho đến khi đạt mức 50% SoH. Cho đến khi đó, các loại pin này không có ý nghĩa về mặt thương mại nữa.

Bảo An (t/h)
http://vietq.vn/tuoi-tho-cua-pin-xe-hoi-dien-co-the-keo-dai-trong-bao-lau-d184356.html

Điện gió nổi ngoài khơi có thể là mặt trận lớn nhất của năng lượng gió ở khu vực châu Á – Thái Bình Dương

Hãng phân tích Wood Mackenzie cho biết, điện gió nổi ngoài khơi có thể là mặt trận tiếp theo trong phát triển lĩnh vực điện gió ở khu vực châu Á – Thái Bình Dương. Chi phí vốn (CAPEX) sẽ giảm xuống trung bình 3 triệu USD/MW trong giai đoạn 2025-2030.

Theo Wood Mackenzie, một thị trường quan trọng cho công nghệ nổi ngoài khơi đang hình thành ở châu Á. Các nhà phát triển tại Nhật Bản, Hàn Quốc và Đài Loan đã công bố kế hoạch phát triển các dự án thử nghiệm trọng điểm, mặc dù quy mô triển khai vẫn còn hạn chế so với công nghệ xây dựng nền đáy cố định cho trụ gió. Điện gió nổi ngoài khơi được dự báo chỉ chiếm 6% trong tổng công suất 26 GW công suất gió ngoài khơi mới dự kiến được xây dựng trong thập kỷ này tại khu vực châu Á – Thái Bình Dương, ngoại trừ Trung Quốc.


Dự án giàn turbin đôi nổi 200MW ngoài khơi Hàn Quốc của Tập đoàn Shell.

Chuyên gia phân tích Robert Liew của Wood Mackenzie cho biết, việc lắp đặt thêm 1,56 GW công suất điện gió nổi ngoài khơi Nhật Bản, Hàn Quốc và Đài Loan sẽ cần các khoản đầu tư trị giá ít nhất 8 tỷ USD. Nếu xem xét thêm dự án truyền dẫn trị giá 9 tỷ USD trong giai đoạn lập kế hoạch ban đầu, nhu cầu đầu tư có thể lên tới 58 tỷ USD. Duy trì nguồn cung cấp điện là một thách thức quan trọng đối với các thị trường này khi các nhà máy nhiệt điện lạc hậu sắp hết vòng đời dự án và cơ hội phát triển điện than, điện hạt nhân mới bị hạn chế đáng kể. Ba thị trường Đông Bắc Á phải đối mặt với việc ngừng hoạt động công suất nhiệt điện than và điện hạt nhân lên tới 89 GW trong giai đoạn 2020 – 2030.

Chuyên gia Liew cho biết, chính phủ các nước này đang tích cực tìm kiếm nguồn cung điện từ NLTT để lấp đầy khoảng trống cung cấp, nhưng do hạn chế về đất đai nên các lựa chọn mở rộng NLTT bị hạn chế. Điện gió nổi ngoài khơi đang được chú ý nhiều hơn nhưng chi phí cao vẫn là rào cản lớn đối với việc áp dụng rộng rãi công nghệ này. Để đảm bảo tính bền vững lâu dài của nguồn điện này, chi phí lắp đặt phải giảm đáng kể để ít nhất có thể cạnh tranh được với nguồn cung điện khí.


Thiết bị lắp đặt nổi Lidar cho dự án điện gió Ulsan 1,4GW ngoài khơi Hàn Quốc.

Với những thành quả hạn chế, quy mô điện gió nổi ngoài khơi mới có 21 MW công suất thử nghiệm, cho thấy tính không chắc chắn cao về khả năng giảm chi phí dự án tại các thị trường châu Á – Thái Bình Dương. Hiện tại, chính phủ Nhật Bản ước tính rằng, chi phí đầu tư hiện tại đối với điện gió nổi ngoài khơi có thể hạ xuống 4 triệu USD/MW so với chi phí đầu tư điện gió trên bờ là 2-3 triệu USD/MW. Trong khi chi phí đầu tư điện gió trên bờ được dự báo sẽ giảm còn 1,5 triệu USD/MW đến năm 2030.

Wood Mackenzie dự báo, chi phí đầu tư trung bình của các nhà máy điện gió nổi ngoài khơi tại ba thị trường tiên phong nêu trên sẽ giảm khoảng 40% xuống còn 2,6-4 triệu USD/MW vào giai đoạn 2025-2030.

Bất chấp thách thức về chi phí, Chính phủ Nhật Bản và Hàn Quốc đã ban hành các chính sách hỗ trợ lĩnh vực này. Tại Nhật Bản, biểu thuế nhập khẩu áp dụng cho các dự án nổi so với các dự án ngoài khơi có chân đế đang chuyển sang mức giá thông qua đấu giá. Một cuộc đấu giá điện gió nổi quy mô 22 MW ở quần đảo Goto cũng đang thử nghiệm xem liệu giá trúng thầu có thể thấp hơn biểu giá được cấp vào hiện tại hay không. Tại Hàn Quốc, các dự án nổi ngoài khơi có thể được cấp chứng chỉ NLTT với nhiều ưu đãi hơn tùy thuộc vào khoảng cách giữa các cơ sở kết nối.

Chuyên gia Liew cho rằng, với đủ sự hỗ trợ của chính phủ, các nhà phát triển sẽ sẵn sàng đánh cược lớn hơn vào năng lượng gió nổi. Việc xây dựng một hệ thống các dự án nổi chắc chắn sẽ giúp lĩnh vực này có tầm nhìn xa hơn, do đó sẽ thu hút nhiều nhà đầu tư hơn nữa. Những sự hỗ trợ của chính phủ là tầm nhìn dài hạn nhằm thiết lập một chuỗi cung ứng gió nổi ngoài khơi trong nước sẽ mang lại lợi ích cho nền kinh tế địa phương. Điện gió nổi ngoài khơi đòi hỏi nhiều tàu lắp đặt tuabin hơn so với các dự án gió ngoài khơi có chân đế. Điều này sẽ thu hút sự quan tâm của các quốc gia có thế mạnh về ngành hàng hải hay giao thông thủy nội địa. Chính phủ Nhật Bản và Hàn Quốc mong muốn thiết lập một trung tâm chuỗi cung cứng nổi ở nước ngoài cho khu vực và xuất khẩu tiềm năng trong tương lai sang các thị trường khác. Điều này cũng có thể góp phần đáng kể vào việc giảm chi phí.

Điện gió nổi ngoài khơi có lẽ sẽ là mặt trận lớn nhất cho năng lượng gió ở khu vực châu Á – Thái Bình Dương trong dài hạn. Lĩnh vực này có tương lai triển vọng vì hầu hết các thị trường ở châu Á – Thái Bình Dương đều có bờ biển dài và nguồn năng lượng gió ngoài khơi gần các thành phố ven biển có thể được khai thác, thậm chí ở cả những khu vực có tốc độ gió thấp. Mặc dù quy mô vẫn còn hạn chế, năng lượng gió nổi ngoài khơi có tiềm năng cung cấp điện gần như vô tận.

Viễn Đông
https://nangluongquocte.petrotimes.vn/dien-gio-noi-ngoai-khoi-co-the-la-mat-tran-lon-nhat-cua-nang-luong-gio-o-khu-vuc-chau-a-thai-binh-duong-601503.html

Rác thải điện tử và những nguy hại khó lường

Rác thải điện tử là những sản phẩm điện hoặc điện tử đã hư hỏng, lỗi thời… Trong loại rác thải này có rất nhiều chất độc gây hại cho sức khỏe con người.

Rác thải điện tử tăng nhanh- mối lo ngại toàn cầu

Tình trạng rác thải điện tử tại khu vực châu Á đang hết sức nghiêm trọng, gây ra mối nguy hại lớn với sức khỏe và môi trường. Rác thải điện tử là những sản phẩm điện hoặc điện tử đã hư hỏng, lỗi thời… Loại rác này là mối lo ngại lớn trên toàn cầu. Nếu không có sự kiểm soát, các chất độc trong rác điện tử có thể ngấm vào đất hoặc các mạch nước ngầm, gây hại cho môi trường và sức khỏe con người.

Châu Á hiện là thị trường thiết bị điện tử, gia dụng lớn nhất, chiếm gần một nửa doanh số toàn cầu, nhưng cũng là khu vực tạo ra nhiều rác thải điện tử nhất. Những yếu tố góp phần dẫn đến thực trạng này là thu nhập tăng, dân số trẻ bùng nổ, sản phẩm lỗi thời nhanh chóng do công nghệ cải tiến và mẫu mã không ngừng thay đổi và nạn buôn bán rác thải điện tử bất hợp pháp.

Mỗi năm trên toàn cầu có khoảng 1 tỉ chiếc điện thoại di động và 300 triệu máy tính được đưa vào sản xuất. Chất thải điện tử toàn cầu dự kiến sẽ tăng 8% mỗi năm và có khoảng 80% số chất thải điện tử tạo ra ở Mỹ được “xuất khẩu” sang châu Á, phản ánh một luận điểm gây tranh cãi đáng kể khi người ta nhắc đến dòng chảy thương mại toàn cầu.

Tại Việt Nam, nhu cầu về thiết bị điện tử gia dụng trong những năm gần đây có xu hướng gia tăng cùng với sự phát triển của nền kinh tế và sự cải thiện mức sống người dân.


Rác thải điện tử đang là mối đe dọa toàn cầu chứ không riêng gì Việt Nam. Ảnh minh họa

Theo thời gian, do việc giảm liên tục giá thành mang tính cạnh tranh của thiết bị điện tử, cùng với những thay đổi về mẫu mã, loại hình và công năng sẽ tạo ra nhu cầu lớn thay đổi thiết bị điện tử gia dụng, dẫn đến phát sinh một lượng rác thải điện tử gia dụng lớn với tốc độ gia tăng nhanh chóng.

Theo thống kê của Chương trình Môi trường Liên Hợp quốc, mỗi người dân Việt Nam thải ra trung bình 1,3kg chất thải điện tử mỗi năm, tương đương 116.000 tấn. Chất thải điện tử hiện chiếm tới 2% trong tổng số toàn bộ chất thải hiện nay.

Số liệu thống kê từ Viện Khoa học và Công nghệ môi trường, Trường Đại học Bách khoa Hà Nội cho thấy, năm 2010 nước ta có khoảng hơn 3,77 triệu thiết bị điện và điện tử gia dụng bị thải ra với trọng lượng ước tính khoảng 113 nghìn tấn. Hiện mỗi năm Việt Nam phát sinh khoảng 100 nghìn tấn rác thải điện tử. Ước tính đến năm 2025, riêng lượng rác thải là ti vi có thể lên tới 250 nghìn tấn.

Những chất độc từ rác thải điện tử

Rác thải điện tử chứa nhiều chất thải cực kì độc hại và hiện nay lượng rác này đang ngày càng tăng lên nhất là những nước đã và đang phát triển, đe dọa đến môi trường và sức khỏe con người.

Những rác điện tử như điện thoại, tủ lạnh… nhìn bề ngoài thì hoàn toàn thấy vô hại nhưng những chất cấu tạo nên nó mới thực sự độc hại. Những loại rác này thường được tạo bởi những kim loại nặng, những hợp chất hóa học dễ xâm nhập vào đất và nước.

Ở Việt Nam, các vựa ve chai thường thu mua loại rác này và họ tự tháo gỡ những bộ phận bên trong để bán lại. Chính vì sự vô tình này đã làm các chất độc hại bám vào đất và tích tụ dần thẩm thấu vào nguồn nước ngầm.

Không chỉ vậy, tay chân họ cũng dính những chất kim loại nặng đó, mặc dù rửa với xà bông nhưng nó vẫn sẽ còn bám lại và dễ gây bệnh cho họ về đường hô hấp, thậm chí ưng thư, suy giảm nhận thức…

Trong khi đó, hiện nay còn nhiều nhà máy xử lý rác điện tử còn thô sơ, không được vận hành một cách an toàn. Đốt cháy rác thải điện tử một cách bừa bãi, làm khí đốt độc hại lẫn vào không khí gây ô nhiễm không khí, trong đó có cả chất thải dioxin rất dễ gây ra quái thai, dị tật đối với thai nhi.

Rác thải điện tử là tivi, camera, màn hình máy tính thường có ống tia cực âm bên trong, ống chứa những chất như chì và baric dễ ngấm vào đất và nước ngầm nơi tái chế, dễ ảnh hưởng đến sức khỏe người dân nơi đó khi sử dụng nước để nấu nướng, tắm rửa.

Rác thải điện tử nguy hiểm là thế, chính vì vậy không nên tái chế, đốt, xử lý một cách bừa bãi, không đúng quy định. Rác thải điện tử phải được phân loại và phải được xử lý đúng quy trình.

Hiện nay, thì không nhiều gia đình sử dụng nguồn nước ngầm thay vào đó là sử dụng nước máy, tuy nhiên nếu cứ tiếp tục xả rác thì không những nguồn nước ngầm mà cả nguồn nước biển, nước sông cũng chứa đầy kim loại nặng.

An Dương (T/h)

http://vietq.vn/rac-thai-dien-tu-va-nhung-nguy-hai-kho-luong-d184003.html

Định hướng nghiên cứu công nghệ mạng 6G và sự tham gia của Việt Nam

Theo các chuyên gia, Việt Nam cần tận dụng một số thế mạnh như nghiên cứu và sản xuất các thiết bị đầu cuối 6G; nghiên cứu chuyên sâu trong việc tối ưu, điều khiển trong hệ thống mạng 6G.

Công nghệ mạng 6G là một cuộc cách mạng lớn so với các thế hệ mạng trước đó, có thể biến các mạng di động ở các quốc gia trở thành một mạng di động duy nhất trên toàn thế giới.

Theo chu kỳ, mỗi thế hệ mạng di động mới thường được triển khai sau mỗi 10 năm, mạng di động thế hệ thứ 6 (6G) được dự đoán sẽ khai thác thương mại năm 2030.

Vì thế, Việt Nam cần định hướng nghiên cứu và tận dụng những thế mạnh hiện có để phát triển công nghệ mạng 6G ngay từ thời điểm này.

Ảnh minh họa. (Nguồn: The Investor)

Ứng dụng tiềm năng của mạng 6G

Theo Phó Giáo sư, Tiến sỹ Phạm Thanh Giang, Viện Công nghệ thông tin (Viện Hàn lâm Khoa học và Công nghệ Việt Nam), hệ thống mạng không dây nói chung và mạng di động nói riêng có sự phát triển đặc biệt nhanh, mang tính cách mạng trong vài thập kỷ gần đây. 5 thế hệ mạng di động đã và đang triển khai mang lại nhiều thông tin, tiện ích cho người dân ở khắp nơi trên thế giới.

Theo đó, công nghệ mạng 1G (thoại không dây) là mạng di động thế hệ đầu tiên được bắt đầu vào năm 1980.

Công nghệ mạng 1G chỉ hỗ trợ dịch vụ thoại, chất lượng thoại thấp, thường xuyên bị ngắt cuộc gọi, dung lượng pin kém và không hỗ trợ bảo mật. Tốc độ lý thuyết của mạng 1G là 2,4 Kbps.

Công nghệ mạng 2G (nhắn tin đa phương tiện) được thử nghiệm đầu tiên tại Phần Lan năm 1991, đây là một cải tiến lớn so với thế hệ 1G khi chuyển đổi từ truyền thông tương tự sang truyền thông số.

Mạng 2G không chỉ cung cấp dịch vụ thoại mà còn bắt đầu hỗ trợ dịch vụ dữ liệu như nhắn tin SMS, nhắn tin đa phương tiện MMS. Tốc độ mạng 2G ban đầu đạt khoảng 50 Kbps. Sau một vài cải tiến với các công nghệ như GPRS, EDGE… tốc độ mạng 2G có thể đạt tới 1,3 Mbps.

Tuy hiện nay mạng 2G đã được thay thế bởi các công nghệ mới, nhưng vẫn được sử dụng như một kênh dự phòng ở nhiều nơi trên thế giới.

Công nghệ mạng 3G (thoại truyền hình, Internet di động) được giới thiệu vào năm 1998, mở đầu cho mạng di động băng thông rộng với tốc độ truyền dữ liệu cao hơn.

Nhờ cải tiến về mặt tốc độ, các điện thoại di động có thể sử dụng được các dịch vụ như điện thoại truyền hình, truy cập internet.

Tốc độ mạng 3G đạt 2 Mbps khi không di chuyển và 384 Kbps khi di chuyển trên phương tiện. Sau một vài cải tiến với các công nghệ như HSPA, HSPA+… tốc độ mạng 3G có thể đạt tới 7,2 Mbps.

Công nghệ mạng 4G (ứng dụng Internet) được giới thiệu vào năm 2008, không chỉ hỗ trợ kết nối internet như mạng 3G, mà còn cung cấp các dịch vụ như game online, truyền hình HD, hội nghị truyền hình và các dịch vụ yêu cầu tốc độ cao khác. Tốc độ lý thuyết của mạng 4G đạt tới 1 Gbps và 100 Mbps khi di động.

Mới nhất, công nghệ mạng 5G (Internet vạn vật) đang được thử nghiệm giới hạn ở một số nơi trên thế giới. Mạng 5G hứa hẹn rất nhiều cải tiến như tốc độ nhanh hơn, mật độ kết nối cao hơn, độ trễ thấp hơn, tiết kiệm năng lượng. Tốc độ lý thuyết của mạng 5G đạt tới 20 Gbps.

Trong khi tốc độ mạng 5G đạt tới 20 Gbps, mạng 6G hướng tới tốc độ Tegabit (Tbps) nhanh hơn từ vài trăm đến vài nghìn lần mạng 5G. Mục tiêu của mạng 6G không chỉ ở tốc độ, mà còn nhằm giải quyết các vấn đề còn tồn tại của mạng 5G và hướng tới giải quyết các yêu cầu của tương lai như khả năng kết nối không gian-khí quyển-mặt đất-dưới biển.

Bốn định hướng chính về kết nối đang được các nước trên thế giới nghiên cứu là: Kết nối thông minh, kết nối sâu, kết nối không đồng nhất và kết nối mọi nơi.

Hiện có nhiều công nghệ tiềm năng, kể cả các công nghệ của tương lai được xem xét đưa vào mạng 6G như truyền thông không dây quang, truyền thông lượng tử, thiết bị bay không người lái, vệ tinh tầng thấp… các công nghệ như trí tuệ nhân tạo, phân tích dữ liệu lớn cũng được đưa vào hỗ trợ mạng 6G nhằm đảm bảo các mục tiêu về chất lượng mạng.

Theo đó, những công nghệ của tương lai như trí tuệ nhân tạo sẽ được tích hợp vào hệ thống mạng 6G giúp mọi thành phần mạng như các thiết bị vật lý, xử lý tín hiệu, quản lý tài nguyên, dịch vụ kết nối sẽ được hợp nhất và quản lý sử dụng.

Từ đó, ứng dụng của mạng 6G giúp hướng đến một xã hội siêu thông minh bao gồm: Nhà thông minh sẽ được triển khai rộng rãi khi các thiết bị thông minh đều có khả năng kết nối và điều khiển từ xa; giao thông thông minh với hệ thống điều khiển, xe tự hành, taxi bay có thể được triển khai dựa trên công nghệ mạng 6G; thành phố thông minh được xây dựng dựa trên các hệ thống giám sát môi trường, hệ thống điều khiển tối ưu năng lượng nhằm nâng cao mức sống của người dân.

Công nghệ thực tại ảo mở rộng (là bước tiếp theo của thực tại ảo, thực tại ảo tăng cường, thực tại ảo hỗn hợp) cũng cần đến mạng 6G.

Ngoài việc các đối tượng được mô phỏng 3D và điều khiển bằng trí tuệ nhân tạo, trải nghiệm người dùng sẽ được hỗ trợ bởi cả 5 giác quan nghe, nhìn, khứu giác, vị giác, xúc giác thông qua các cảm biến. Với băng thông tốc độ và ổn định cao, độ trễ thấp, mạng 6G sẽ đảm bảo chất lượng của trải nghiệm người dùng.

Các đặc tính của truyền thông không dây của mạng 6G cho phép thiết lập công nghệ của tương lai là hệ thống giao diện bộ não và máy tính (BCI) trong cuộc sống hàng ngày. BCI sẽ thu nhận các tín hiệu từ bộ não và chuyển đến các thiết bị số, phân tích và diễn dịch tín hiệu thành các lệnh điều khiển thiết bị.

Mạng 6G sẽ có thay đổi đột phá về mặt kiến trúc với thành phần như tích hợp mạng vệ tinh, cho phép mạng 6G khả năng di động toàn cầu; chuyển đổi và nâng cấp kết nối thông thường thành kết nối thông minh; tích hợp truyền thông tin và năng lượng, không chỉ cho phép truyền thông tin mà còn truyền năng lượng không dây nhằm sạc các thiết bị.

Xu thế kết nối di động

Phó Giáo sư, Tiến sỹ Phạm Thanh Giang nhận định trong vòng 10 năm trở lại đây, số lượng các thiết bị di động tăng rất nhanh, đồng thời khối lượng dữ liệu truyền thông trên mạng di động cũng tăng ở mức độ đột biến.

Theo dự đoán của các nhà khoa học, việc tăng trưởng theo hàm mũ của truyền thông di động với số lượng thiết bị đạt 17 tỷ vào năm 2030; lượng dữ liệu trên các thiết bị di động tăng 670 lần trong năm 2030 so với lượng dữ liệu năm 2010, đạt khoảng 5 Zettabyte (1021 bytes)/tháng.

Mặc dù hiện nay phần lớn các thiết bị di động chưa sử dụng hết băng thông của mạng 4G và mạng 5G vẫn còn là mới mẻ, các dự đoán tăng trưởng của truyền thông di động cho thấy các nước trên thế giới, các tập đoàn đa quốc gia đã và đang chuẩn bị cho “cuộc đua” 6G.

Nhiều nước và khu vực trên thế giới đã tham gia cuộc đua về nghiên cứu triển khai công nghệ mạng 6G như Hoa Kỳ, Phần Lan, Châu Âu, Hàn Quốc, Trung Quốc, Nhật Bản…

Các quốc gia, doanh nghiệp tham gia cuộc đua 6G sớm sẽ có lợi thế rất lớn khi sở hữu các bằng sáng chế liên quan đến các tiêu chuẩn truyền thông thì có thể kiếm được lợi nhuận khổng lồ thông qua việc bán thiết bị và phần mềm.

Hiện tại, Việt Nam chưa bắt đầu những nghiên cứu về hạ tầng với mục tiêu đưa đến dịch vụ mạng 6G nhưng trong sự nối tiếp của mạng 5G, Việt Nam đã có nhiều chuẩn bị nghiên cứu liên quan.

Hiện 3 nhà mạng Viettel, Vinaphone, MobiFone bắt đầu thử nghiệm mạng 5G vào năm 2019 và hướng tới triển khai thương mại vào các năm tiếp theo.

Phó Giáo sư, Tiến sỹ Phạm Thanh Giang cho biết: Viện Công nghệ thông tin (Viện Hàn lâm Khoa học và Công nghệ Việt Nam) là một trong các đơn vị đưa Internet đầu tiên vào Việt Nam, việc nghiên cứu và triển khai công nghệ mạng mới luôn chú trọng.

Trong đề tài Nhà nước “Nghiên cứu phát triển một số dịch vụ đa phương tiện và giám sát các thông số môi trường sản xuất trên nền mạng viễn thông WiMAX tại khu vực Tây Nguyên,” mã số 19/KHCN-TN3/C07, năm 2011-2015, Viện Công nghệ thông tin đã triển khai thử nghiệm mạng 4G WiMAX trên địa bàn tỉnh Đắk Lắk phục vụ du lịch và giáo dục.

Việt Nam cũng đã từng bước xây dựng nhóm nghiên cứu mạnh với khá nhiều nghiên cứu chuyên sâu về tối ưu và điều khiển mạng không dây thế hệ mới. Để chuẩn bị cho mảng nghiên cứu trí tuệ nhân tạo (AI), hiện khá nhiều đơn vị mạnh hướng tới tập trung cho mảng nghiên cứu này như Tập đoàn Vin Group thành lập viện nghiên cứu VinAI năm 2019; Viện Công nghệ thông tin thành lập Trung tâm nghiên cứu AI, hướng tới đầu tư về con người, trang thiết bị cho các nghiên cứu về AI.

Trong việc triển khai các thế hệ mạng di động, Việt Nam thường đi sau thế giới từ 7-10 năm đối với các mạng di động 2G, 3G, 4G. Đối với mạng 5G, Việt Nam đã thực hiện các thử nghiệm từ năm 2019, kỳ vọng đưa Việt Nam vào các nhóm nước đầu tiên trên thế giới triển khai mạng 5G, sau các nước như Hàn Quốc, Mỹ, Nhật Bản, Australia.

Tuy vậy, Việt Nam vẫn còn khoảng cách khá xa so với thế giới về năng lực nghiên cứu và triển khai trong lĩnh vực viễn thông, trong khi đó, thời gian từ việc triển khai thử nghiệm đến khai thác thương mại thường kéo dài trung bình đến 5 năm đối với các mạng di động thế hệ trước.

Đối với mạng 6G, các nước hiện nay đều có cơ hội như nhau về mặt thời gian để có thể dẫn đầu về nghiên cứu, triển khai mạng 6G, nhưng không phải nước nào cũng đủ năng lực về khoa học và công nghệ cũng như tài chính để tham gia “cuộc đua” ngay từ thời điểm này.

Việt Nam cần tận dụng một số thế mạnh như nghiên cứu và sản xuất các thiết bị đầu cuối 6G; nghiên cứu chuyên sâu trong việc tối ưu, điều khiển trong hệ thống mạng 6G; nghiên cứu công nghệ AI cho hệ thống quản trị, xử lý dữ liệu trong hệ thống mạng 6G; nghiên cứu các bài toán an toàn, bảo mật blockchain để giải quyết bài toán an toàn trong hệ thống mạng mới./.

Hoàng Nam (TTXVN/Vietnam+)

https://www.vietnamplus.vn/dinh-huong-nghien-cuu-cong-nghe-mang-6g-va-su-tham-gia-cua-viet-nam/696363.vnp

Chế tạo thành công loại nhựa an toàn được làm từ dầu thực vật

Theo các nhà khoa học, loại nhựa mới này có khả năng tái chế, tái sử dụng nhiều lần hơn so với các loại nhựa thông thường khác, đặc biệt khá an toàn.

Các chuyên gia hóa học người Đức mới đây vừa phát triển thành công một loại vật liệu có thể thay thế được nhựa dẻo polyethulene. Bằng việc tái cấu trúc lại cách các phân tử nhựa kết hợp với nhau, nhóm nghiên cứu có được loại nhựa đem đến hiệu quả gấp 10 lần các sản phẩm cũ và chúng có thể tái chế dễ dàng hơn bằng phương pháp hóa học. Trong báo cáo khoa học mới đây được đăng tải trên tạp chí Nature, loại nhựa mới này có nguồn gốc từ dầu thực vật, chúng thân thiện với môi trường và có thể thay thế được chất liệu nhựa chúng ta vẫn đang sử dụng.

Hầu hết các quy trình tái chế ngày nay đều dựa trên dây chuyền cơ khí. Rác thải nhựa sẽ được cắt nhỏ và chế biến thành vật liệu nhựa mới. Tái chế hóa chất đòi hỏi nhiệt độ cao hoặc các chất phá vỡ chuỗi phân tử nhựa. Độ bền của nhựa cũng là một trong những trở ngại ngăn cản quá trình tái chế hóa học: chúng quá dẻo và chắc chắn. Polyethylene là loại nhựa phổ biến nhất, cấu trúc của nó sẽ bị phân rã ở nhiệt độ 600 độ C. Chưa hết, quá trình tái chế polyethylene bằng chất hóa học không đạt hiệu quả tốt.


Vỏ điện thoại nhựa làm từ dầu thực vật, in 3D do nhóm khoa học trường Đại học Konstanz.

Stegan Mecking, tác giả chính của nghiên cứu và cũng là người đứng đầu mảng khoa học vật chất tại Đại học Konstanz (Đức) cho biết: “Khả năng ổn định của các chuỗi hydrocarbon là vấn đề rất nan giải. Để có thể thực sự phân rã chúng thành những phân tử nhựa, ta cần một nhiệt độ đủ lớn, điều này tốn rất nhiều năng lượng. Kết quả thu lại cũng không được như những gì ta mong muốn”.

Được biết, loại nhựa mới do ông Mecking và cộng sự tạo ra mang những liên kết hóa học dễ bị phân rã hơn, do đó quá trình tái chế hóa học cũng sẽ hiệu quả hơn rất nhiều. Nhúng loại nhựa mới vào ethanol hoặc methanol, thêm chất xúc tác và đặt vào trong mội trường ở nhiệt độ 120 độ C, nhựa sẽ ngay lập tức phân rã. Nếu không có chất xúc tác, quá trình tái chế cũng chỉ cần mức nhiệt 150 độ C là đã có thể đem đến kết quả tốt.

Sau khi có được sản phẩm sau tái chế, các nhà nghiên cứu làm nguội và tái tinh thể hóa thứ nhựa đã tan chảy rồi tiến hành lọc. Khi thử nghiệm với nhựa polycarbonate, nhóm nghiên cứu thu về được tới 96% lượng vật liệu tạo nên thứ nhựa tổng hợp. Trong nghiên cứu mới này, các nhà hóa học phát hiện ra rằng khi nhựa có chứa màu nhuộm hoặc các sản phẩm phụ (như sợi carbon) khiến việc tái chế cơ khí trở nên khó khăn. Họ chọn dầu thực vật làm nhựa vì trong dầu thực vật có một chuỗi phân tử dài, so với dầu thô được sử dụng trong sản xuất nhựa hàng loạt, dầu thực vật thân thiện với môi trường hơn.

Loại nhựa mới có độ bền tương đương với polyethylene đậm đặc và thích hợp cho in 3D hơn cả polyethylene. Sau khi tái chế, nhựa gốc dầu thực vật vẫn giữ được các đặc tính của nó. Trở ngại duy nhất ngăn việc đại chúng hóa thứ vật liệu mới là giá thành quá cao. Ethylene là “viên gạch nền móng rẻ nhất được dùng để xây nên ngành công nghiệp hóa học”, vậy nên việc có thể cạnh tranh được với nhựa polyethylene ở thời điểm hiện tại là không thể.

Hiện tại, Giáo sư Mecking và các đồng nghiệp của ông đang nghiên cứu tính khả thi của chất dẻo mới trong in 3D. Ông nói thêm về việc tiếp tục phát triển các loại nhựa mới và mở rộng quy mô sản xuất.

Bảo Linh
http://vietq.vn/che-tao-thanh-cong-loai-nhua-an-toan-duoc-lam-tu-dau-thuc-vat-d183984.html